翻訳と辞書
Words near each other
・ Strigeoidea
・ Striger
・ Strigi
・ Strigia
・ Strigil
・ Strigina
・ Striginiana
・ Striginiana agrippa
・ Striginiana camerunica
・ Striginiana nobilis
・ Strictly Come Dancing Christmas Specials
・ Strictly Commercial
・ Strictly Confidential
・ Strictly Confidential (film)
・ Strictly Confidential (TV series)
Strictly convex space
・ Strictly Dance Fever
・ Strictly Dancing
・ Strictly determined game
・ Strictly Diesel
・ Strictly Dishonorable
・ Strictly Dishonorable (1931 film)
・ Strictly Dishonorable (1951 film)
・ Strictly Dishonorable (play)
・ Strictly Dr. Drew
・ Strictly Dynamite
・ Strictly Elvis
・ Strictly for Grown Ups
・ Strictly for Mothers
・ Strictly for the Birds


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Strictly convex space : ウィキペディア英語版
Strictly convex space

In mathematics, a strictly convex space is a normed topological vector space (''V'', || ||) for which the unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two points ''x'' and ''y'' in the boundary ∂''B'' of the unit ball ''B'' of ''V'', the affine line ''L''(''x'', ''y'') passing through ''x'' and ''y'' meets ∂''B'' ''only'' at ''x'' and ''y''. Strict convexity is somewhere between an inner product space (all inner product spaces are strictly convex) and a general normed space (all strictly convex normed spaces are normed spaces) in terms of structure. It also guarantees the uniqueness of a best approximation to an element in ''X'' (strictly convex) out of ''Y'' (a subspace of ''X'') if indeed such an approximation exists.
==Properties==

* A Banach space (''V'', || ||) is strictly convex if and only if the modulus of convexity ''δ'' for (''V'', || ||) satisfies ''δ''(2) = 1.
* A Banach space (''V'', || ||) is strictly convex if and only if ''x'' ≠ ''y'' and || ''x'' || = || ''y'' || = 1 together imply that || ''x'' + ''y'' || < 2.
* A Banach space (''V'', || ||) is strictly convex if and only if ''x'' ≠ ''y'' and || ''x'' || = || ''y'' || = 1 together imply that || ''αx'' + (1 − ''α'')''y'' || < 1 for all 0 < ''α'' < 1.
* A Banach space (''V'', || ||) is strictly convex if and only if ''x'' ≠ ''0'' and ''y'' ≠ ''0'' and || ''x'' + ''y'' || = || ''x'' || + || ''y'' || together imply that ''x'' = ''cy'' for some constant ''c > 0''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Strictly convex space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.